Forcing et degrés Turing

Parce que le forcing n'a pas encore dit son dernier mot

Fabien GIVORS

Sous la direction de Gregory Lafitte LIF - Université de Provence

11 juin 2009

- Problématique
- 2 Les incomparables faciles avec ¬HC
- Degrés incomparables et forcing
- Degrés r.e. et forcing
- 5 Perspectives
 Université
 Nice sorbia antipolis

Problématique Les incomparables faciles avec ¬HC

Degrés incomparables et forcing Degrés r.e. et forcing Perspectives

- Problématique
- Les incomparables faciles avec ¬HC
- Degrés incomparables et forcing
- Degrés r.e. et forcing

Degrés incomparables et forcing Degrés r.e. et forcing

Problématique

Notions de calculabilité (1/2)

Les degrés Turing

- Fonctions p.p.r.: $(\varphi_e)_{e \in \mathbb{N}}$, $\forall e \in \mathbb{N}$, $W_e = dom(\varphi_e)$
- Réduction Turing : $A \leq_T B \Leftrightarrow A$ récursif en B
- Degrés : $(\mathfrak{P}(\mathbb{N})/\equiv_{\mathcal{T}})=\mathbf{D}$
- Treillis : $(\mathbf{D}, \leqslant_{\mathcal{T}})$
- Incomparables : $(\mathbf{a} \not\leq_{\mathcal{T}} \mathbf{b}) \wedge (\mathbf{b} \not\leq_{\mathcal{T}} \mathbf{a})$
- Saut de A : $\mathbf{K}^A = \{e \mid \varphi_e^A(e) \downarrow \}$
- $deg(A) = \mathbf{a}, deg(\mathbf{K}^A) = \mathbf{a}'$
- a r.e. $\Leftrightarrow \exists e, W_e \in \mathbf{a}$

Les incomparables faciles avec →**HC**Degrés incomparables et forcing

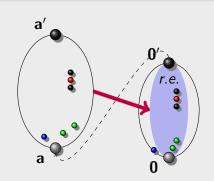
Degrés r.e. et forcing

Perspectives

Problématique

Résultats de calculabilité (2/2)

Structure des degrés Turing



- Structure : densité, paires minimales, degrés minimaux, homogénéité, . . .
- Et pour les degrés r.e.?
- Problème de Post : degrés intermédiaires, indécidabilité et arrêt ?
- Friedberg-Muchnik

- Problématique
- 2 Les incomparables faciles avec ¬HC
- 3 Degrés incomparables et forcing
- 4 Degrés r.e. et forcing

Les incomparables faciles avec ¬HC

La théorie des ensembles rend tout plus simple.

Ingrédients

- Le nombre de réductions Turing est \aleph_0 .
- Le nombre de prédécesseurs d'un degré Turing est λ₀.
- Il y a 2^{\aleph_0} degrés.

Lemme

- Ordre total sur $> \aleph_1$ degrés?
- $\Rightarrow \exists$ degré avec $\geqslant \aleph_1$ prédécesseurs
- Contradiction. Pas d'ordre total sur $X \subseteq \mathbf{D}$ où $|X| > \aleph_1$.

Les incomparables faciles avec ¬HC

Les incomparables nouveaux sont arrivés.

Rappel

 \neg **HC** : $2^{\aleph_0} \geqslant \aleph_2$

Théorème

- Soit M un modèle de ZF + ¬HC.
- II y a 2^{\aleph_0} ($\geqslant \aleph_2$) degrés.
- Pas d'ordre total sur $X \subseteq \mathbf{D}$ où $|X| > \aleph_1$.
- il y a donc des degrés incomparables dans M;
- $\exists X, Y, \forall e, \left(X \not\leq_T \varphi_e^Y \land Y \not\leq_T \varphi_e^X\right)$ énoncé $\Sigma_1^1 (\subseteq \Sigma_2^1)$
- Shoenfield : $P \in \Sigma_2^1$ vrai dans M de $\mathbf{ZF} \Rightarrow vrai$ dans \mathbf{ZF}
- ∃ incomparables dans tout modèle de **ZF**.

¬**HC**?

- Comment ¬**HC** rend la preuve plus simple?
- On peut montrer d'autres choses aussi simplement?
- Et à partir d'autres propositions ensemblistes?
- Et pour les degrés r.e.?

- Problématique
- 2 Les incomparables faciles avec ¬HC
- Degrés incomparables et forcing
- 4 Degrés r.e. et forcing

Vous avez dit \neg **HC**?

Pourquoi faire simple quand on peut faire compliqué?

Analyse

- Pourquoi la démonstration est si simple?
- En fait, la méthode pour obtenir ¬HC crée des degrés incomparables.
- Une méthode, forcing avec $\mathbf{P} = Fn(\aleph_2 \times \mathbb{N}, \mathbf{2} = \{\mathbf{0}, \mathbf{1}\})$

Des degrés incomparables grâce au forcing Le forcing en deux mots

Pour faire du forcing, il faut...

Un modèle M

C'est notre point de départ, le résultat obtenu en fin de compte ne sera consistant que si ce modèle existe.

Une notion de forcing $(\mathbf{P}, \leqslant) \in M$

- P ensemble ordonné partiellement par ≤;
- 1 plus grand élément de (\mathbf{P}, \leqslant) .

Notre forcing en deux mots

Dans notre cas, on considère...

Un modèle M

On prend M un modèle transitif dénombrable de **ZF**.

Une notion de forcing $(\mathbf{P}, \leqslant) \in M$

- **P** est $Fn(\kappa \times \mathbb{N}, \mathbf{2})$ où κ est un cardinal; a
- 1 est la fonction nulle part définie (= max(P))
- a. Fn(I, J) est l'ensemble des fonctions de I dans J à support fini

Qu'est-ce que forcer?

Densité et filtre

$$D \subseteq \mathbf{P}$$
 dense dans $\mathbf{P} \Leftrightarrow \forall p \in \mathbf{P}, \exists q \in D, q \leqslant p$

$$U \sqsubseteq \mathbf{P}$$
 filtre si $U \neq \emptyset \land \forall p, q \in U, \exists r \in U, (r \leqslant p \land r \leqslant q)$

Générique

 $\exists G \text{ filtre}, \forall D \text{ } M\text{-dense dans } \mathbf{P}, G \cap D \neq \emptyset$

Objectifs

- Construire M[G], $G \in M[G]$ mais $G \notin M$.
- S'assurer que M[G] soit encore un modèle, ...
- S'assurer que les objets créés aient les propriétés voulues.

Qu'est-ce que forcer dans notre cas?

Rajouter κ incomparables

- Incomp. : $D_{\alpha,\beta,e} = \{ p \in \mathbf{P} \mid \exists n, \varphi_e (p(\alpha,n)) \neq p(\beta,n) \}$
- Totales : $D'_{\alpha,n} = \{ p \in \mathbf{P} \mid p(\alpha, n) \text{ définie} \}$
- $f = \bigcup G$
- $\forall \gamma \in \kappa, f_{\gamma} : n \mapsto f(\gamma, n)$
- On force : $\begin{cases} \ \forall \gamma \in \kappa, f_{\gamma} \in \mathbf{2}^{\mathbb{N}} \\ \ \forall \alpha, \beta \in \kappa, \forall e \in \mathbb{N}, f_{\beta} \not\leqslant_{\mathcal{T}} \varphi_{e}^{f_{\alpha}} \end{cases}$

Remarques

- Les f_{γ} sont les réels de Cohen
- P préserve les cardinalités.

Transposition du résultat

- existence dans M[G]
- $\exists X, Y, \forall e, \left(X \not\leqslant_T \varphi_e^Y \land Y \not\leqslant_T \varphi_e^X\right)$ énoncé $\Sigma_1^1 (\subseteq \Sigma_2^1)$
- Shoenfield : c'est absolu donc vrai dans tout modèle de ZF.

Retour sur ¬**HC**

Modèle avec ¬HC : déjà des incomparables.

- Problématique
- 2 Les incomparables faciles avec ¬HC
- Oegrés incomparables et forcing
- Degrés r.e. et forcing

Degrés r.e. et forcing

« Problème de Post, on a tous à y gagner. »

Problème de Post

- Degré intermédiaire r.e. entre $\mathbf{0}$ et $\mathbf{0}'$.
- Degrés incomparables r.e.

Résolution

- Méthode de priorité (Friedberg-Muchnik).
- Comment transformer le forcing précédent pour les degrés r.e.?

Degrés r.e. et forcing

Le forcing à la Maass (1/4) — Résumé

Forcing et calculabilité r.e.

- A priori, pas vraiment de lien
- Denses difficiles à manipuler, trop nombreux
- Générique non r.e.
- Anciens incomparables créés non r.e.

Solution de Maass

- Changer de modèles
- Restreindre les denses
- Changer l'ordre partiel
- Construire des *r.e.*-génériques (des « génériques » *r.e.*).

Degrés r.e. et forcing

Le forcing à la Maass (2/4) — Nouveaux modèles

Le modèle de départ

M: Ensembles héréditairement finis clos par fonctions r.p.

Le modèle d'arrivée

N : Ensembles héréditairement finis clos par fonctions p.p.r.

Motivations?

- **ZF** trop riche.
- Facile d'obtenir une énumération.
- r.p. sont totales.
- Pas de degrés > 0 parmi les r.p.

Degrés r.e. et forcing

Le forcing à la Maass (3/4) — Notion de forcing (\mathbf{P}, \leq)

La notion de forcing

Ordre partiel plus complexe :

$$\mathbf{P} = \left\{ \langle G_0, \dots, G_k \rangle \middle| \begin{array}{l} k \geq 0, \\ (G_i)_{i \leq k} \text{ croissante pour } \subseteq \\ \forall i \leq k, G_i \subseteq i \\ \forall i \leq j \leq k \Rightarrow G_j \cap t^j(i) = G_{t^j(i)} \end{array} \right\} \cup \{\langle \rangle \}$$

Où les G_i sont des ensembles héréditairement finis.

Les denses

- denses de M
- avec témoin r.p. (moins, témoin utile pour construction).

Degrés r.e. et forcing Le forcing à la Maass (4/4) — The End

r.e.-Génériques

- Intersectant des denses r.p.
- Énumération récursive (codée dans le générique) de degré intermédiaire.

Transformer une construction classique en construction à la Maass?

- Restriction sur les denses
- Complexification de l'ordre partiel

- Problématique
- 2 Les incomparables faciles avec ¬HC
- 3 Degrés incomparables et forcing
- 4 Degrés r.e. et forcing

État des lieux

Apports

- On a isolé la transformation de Maass. Généralisation?
- Forcing pour ¬**HC** ajoute **lui-même** des incomparables.
- Gros objets de la théorie des ensembles ⇒ preuves simples
- Il reste $2\frac{1}{2}$ mois de stage.

Perspectives

Pour la suite...

- Les *r.e.*-génériques sont *low* ($\mathbf{x} > \mathbf{0}$, $\mathbf{x}' = \mathbf{0}'$). Liens avec K-trivialité ^a?
- Transposition r.e. des forcings pour les degrés globaux.
 (e.g., paires minimales pas toujours possible)
- Que forcent ces forcings à partir d'un modèle de ZF?
 Modèle de ¬HC ⇒ incomparables.
 Modèle de ∃κ ⇒ autre structure sur D?
- a. Travaux d'André Nies, liés à la complexité de Kolmogorov

Merci de votre attention!

