Higher sub-computabilities

Fabien Givors,

under the supervision of Gregory Lafitte

LIRMM – Université de Montpellier II

February 22nd 2012

1. computabilities and recursion below Church-Kleene's ω_1^{CK}

Building recursive functions the ol' way.

Basic functions

- o: constant null function
- s: successor function
- $\langle \cdot, \cdot \rangle$: pairing function
- π_1, π_2 : projection functions

Operations on functions

- o: composition
- μ: recursion operator

Nice algebraic properties are nice.

Indexing

- φ.: enumeration of partial functions
- $\varphi_u(\langle e, n \rangle) = \varphi_e(n)$: universal function

Classical results over the indexing

- s-m-n
- Kleene's recursion theorem
- Rogers isomorphism

$$\exists \mathtt{s}, \forall \mathtt{x}, \mathtt{y}, \phi_{\mathtt{e}}(\mathtt{y}, \mathtt{x}) = \phi_{\mathtt{s}(\mathtt{e}, \mathtt{y})}(\mathtt{x})$$

$$\forall f, \exists n, \varphi_{f(n)} \equiv \varphi_f$$

Classical problems over the indexing

- Halting problem is undecidable
- recursive function "=" Σ₁ formula

Please, draw me a provably total recursive function.

Recursion operators for total functions

primitive recursive functions

4 o 3 o 2 o 1 o 0

• α -recursive operator (go down along α)

 $\overline{\omega^2 \to \omega + \omega \to \cdots \to 0}$

Fast growing functions

- Ackermann function
- Goodstein sequences, etc.

$$5 = 2^2 + 1 \rightarrow 3^3 + 1 - 1 \rightarrow \cdots \rightarrow 0$$

Rathjen Provable total functions of PA+ $\bigcup_{\alpha\in A}(\mathsf{TI}(\alpha))$ are exactly the α -recursive functions, for $\alpha\in A$

What if our base functions are such a set of recursive functions?

2. sub-computabilities

slices of ω_1^{CK}

From indexings of total recursive functions to...what?

$\Phi^{\mathbb{C}}$: enumeration of total functions

- well closed class (composition, basic functions, primitive recursion)
- s-m-n, no Kleene's recursion theorem
- no universal function in the class

W° : enumeration of one-one recursively enumerated sets

- all C-r.e. sets are r.e.
- finite sets are C-r.e.

$\varphi_{\cdot}^{\mathbb{C}}$: enumeration of partial functions of graph $W_{\cdot}^{\mathbb{C}}$

- "Half-Kleene's recursion theorem"
- C-computable functions are computable

Refinements of Turing reduction between sets and degrees

C-intermediate sets, C-complete sets, C-low sets, etc.

2. sub-computabilities 7/w

3. higher sub-computabilities

beyond ω_1^{CK}

Higher Recursion Theory in a nutshell

Informally

• ω_1^{CK} is now "recursive" from our point of view

Less informally

- α : admissible ordinal (stable by all functions definable inside it)
- L_{α} : α^{th} level of Godel's constructible hierarchy
- $\Sigma_1(L_{\alpha})$: objects of the higher computability

Basic results

- s-m-n
- recursion theorem à la Kleene
- behave as a computability

Higher Sub-Computabilities

Higher computability fits in our framework

- Enumeration of basic objects ($\alpha \rightarrow L_{\alpha}$)
- Enumeration of partial functions *computable* from these objects

Generalization to non-admissible ordinals

Sub-computabilities do not require the ordinal to be admissible.

Work in progress

- identify properties of higher sub-computabilities associated to particular admissible ordinals
- identify links beteen higher sub-computabilities and sub-computabilities

Thank you for your attention!