Towards a fine structure of computabilities

Vers une structure fine des calculabilités

Fabien Givors
Jjoint work with Grégory Lafitte

Université Montpellier Il - CNRS, LIRMM

CMF13’ - Caen
December 18"

Motivations

Computational models for fragments of computability

A computability framework for subrecursion

A hierarchy of computabilities, from primitive recursion to admissible recursion,
and above

1/20

1. classical computability

Church, Kleene, Rosser, Turing

Computable functions

Basic operations

Operations can be composed

Complex operations

Computation tree

1. classical computability

cond : x,y,a,

SO0 =

L minimi
rec,: primi

Not ne

Comnbutable functions

Basic
Oper

Com

Com

The more complex the machine, the more complex the tree.

1. classical computability

Notations

e Enumeration of all the recursive functions, indexed by the natural integers:

(Pe)ocaw
e Convergence of a function:
$26(13) |=7
e Divergence of a function:
©a4(4) T

e Equivalence of functions:

Pe, (x1) = QPe, (x2)

if both computations diverge or converge to the same value.

1. classical computability 3/20

Universality and total functions

e Recursive universal function

Fu, @y = (&%) = Pelx)

e Functions cannot all be total

1. classical computability

f:x— so@, ((x,x))

Je,f = e

/,\-6
_/ﬁ
/\
Q&

)
=

lle e 112
5 @

4/20

Canonical form and interpretation

€ There exist an elementary function F and a recursive prim-
(@]
- jtive predicate T such that:

Ve, %, @u ((8,)) = @a(0) = F(. T(6) 1) '

C

Kleene’s Norma

Input
Checker

Computation tree
£ Finite?
Bounded?

1. classical computability

s;" and Fixed Point

o s
There exists a recursive function s’ such that Ym,n, e,
(pe(<X1, ceey Xmy Y1y e)Ym>) = (psﬁ(e,x1,...,xn)(<)/1» v ,}/m>)

e Fixed point:

For each total recursive function f we can recursively compute an n such
that:

Vx, (pn(x) = Pt(n)

1. classical computability 6/20

s;" and Fixed Point

o s
There exists a recursive function s’ such that Ym,n, e,

Let f be a function such that @) : x — ©n(x) + 1. Then there is
an n verifying:

VX, @n(x) = Pr(n) (x) = @n(x) +1

which is an index for the nowhere defined function.

Vx, @n(x) = Pt(n)

1. classical computability 6/20

s;" and Fixed Point

1. classical computability

2. from total functions to partial computabilities

An interesting trade-off

Classes of total functions

For a class c of total recursive functions, closed under composition:

Universal function not in c

No unbounded search

Limited function growth (e.g. Ackermann function not in p)

Implies limited power

2. from total functions to partial computabilities 8/20

Classes of total functions

For a class c of total recursive functions, closed under composition:

Universal function not in c

No unbounded search

Limited function growth (e.g. Ackermann function not in p)

Implies limited power

How to deal with these limitations?

2. from total functions to partial computabilities 8/20

Primitive recursive codingflealzIggF!

For a class ¢ with an enumeration ¢°:

Toolbox for indices:
[}

[0}
£ Compute new indices for a function

Compute index of composition

2. from total functions to partial computabilities 8/20

Primitive recursive codinglealzIngF!

For a class ¢ with an enumeration ¢°:

Toolbox for indices:
[}

(0]
2 Compute new indices for a function

gel
=

Compute index of composition

L "

2. from total functions to partial computabilities

Requirements:
padding function: p
Ve, (n(e) > &) A (o) = o8

composition function: ¢
C — NG C
Vei, €2 Peler,e2) — e oo

Primitive recursive codinglealzIngF!

For a class ¢ with an enumeration ¢°: Requirements:
Toolbox for indices: padding function:
® Ve, (p(e) >e) A (4’:(9) =

[0}
£ Compute new indices for a function

=
Compute index of composition composition function: ¢
- C . (c
Ve1, €2, 04(c, 0) = dey
- Toolbox for simulation:
S

2 Check the validity of a tree

m

® Bound the tree of a given function

A

2. from total functions to partial computabilities

Primitive recursive codinglealzIngF!

For a class ¢ with an enumeration ¢°:

Toolbox for indices:
[}

[0}
£ Compute new indices for a function

In

Compute index of composition

A

Toolbox for simulation:

tion

2 Check the validity of a tree

m

® Bound the tree of a given function

A

2. from total functions to partial computabilities

Requirements:
padding function:
Ve, (p(e) >e) A (4’:(9) =

composition function: ¢

C — e
Ve1, €2, 04(c, 0) = dey

step-by-step simulation: si
Vx, e, 3n, o2 (x) = simq(e, x,n

cost function: use.
Vx, e, o5 (x) = simg(e, X, Q’Esec(e) (x))

Fundamental classes

Tied to an enumerat

2. from total functions to partial computabilities

Classes defined using recii[Eile]sRlaalETgFE1 el

S Primitive recursive class: p

‘c Smallest fundamental class (stable by
=

& primitive recursion: rec,)

2. from total functions to partial computabilities 10/20

Classes defined using recii[Eile]sRlaalETgFE1 el

5 Prim Forg,h € p,
< Smal f:n,xX — recy(g,h,n,X) € p,
m . .

rimi
=1 with rec (g, h, n, X) such that:

o) = | 0 ifn =0,
0 g(n, X, f(n—1,X)) otherwise.

2. from total functions to partial computabilities

Classes defined using recii[Eile]sRlaalETgFE1 el

S Prim L~ 41f(4) =

E Smal Tec Gkl

& primi ;ji 3H(3) =
Wrea
/f 2”f(2) == 9(2))?> f(2 i 1))
C
P 1+f(1) = g(1,X, f(1 —
o=

* 0--f(0) = h(X

2. from total functions to partial computabilities

Classes defined using recii[Eile]sRlaalETgFE1 el

S Primitive recursive class: p

‘c Smallest fundamental class (stable by
=

& primitive recursion: rec,)

o-recursive classes: cy
Smallest fundamental class stable by
O & recursion: recy

=
e
=
=
=
[

2. from total functions to partial computabilities 10/20

Classes defined using recii[Eile]sRlaalETgFE1 el

Forg,h € cy,
s Prim
= Smal f:n,X — recqq(g,h,n,X) € cu
& primi r
with recq «(g, h, n,X) such that:
5 «-re | a(n,x,f(8(n,x),X)) if0<nandB(n,x)<n,
= Smal f(n,X) = 5, .
£ Sma h(n,x) otherwise,
A & rec

where E stands for the ordinal notation (in <) for f3.

2. from total functions to partial computabilities

Classes defined using recii[Eile]sRlaalETgFE1 el

5 Prim
‘c Smal
o —
A primi

§ o-re

‘E Smal
@
A o rec

2. from total functions to partial computabilities

Classes defined using recii[Eile]sRlaalETgFE1 el

S Primitive recursive class: p
‘c Smallest fundamental class (stable by

E’ primitive reciirsion: rec.)
Rathjen: Functions provably total by a theory of ordinal analysis &

are exactly «-recursive functions.
L S C—

Smallest fundamental class stable by
QO O recursion: recy

efinit

2. from total functions to partial computabilities

How far did we get?

Lo
= Note: Primitive recursiol

2. from total functions to partial computabilities 11/20

How far did we get?

m

= Note: Primii

= ltis ac

2. from total functions to partial computabilities 11/20

How far did we get?

Recall our previous example:

Let f be a function such that @) : x — ©n(x) + 1. Then there is
an n verifying:

Vx, @n(x) = Pt(n) (x) = @n(x) +1

which is an index of the nowhere defined function.

Such a function cannot be total.

2. from total functions to partial computabilities 11/20

How far did we get?

2. from total functions to partial computabilities 11/20

Rogers’ Isomorphism Theorem

Ensures that our results do not depend on our choice of an enumeration

2. from total functions to partial computabilities 12/20

Rogers’ Isomorphism Theorem

Ensures that our results do not depend on our choice of an enumeration

Go from an acceptable enumeration to another

2. from total functions to partial computabilities 12/20

Rogers’ Isomorphism Theorem

Ensures that our results do not depend on our choice of an enumeration

Go from an acceptable enumeration to another

Myhill’s isomorphism for fundamental classes
E For A and B two sets of integers, f 1-1 from A to B and g 1-1 from B to A,
we can build h an isomorphism between A and B.

2. from total functions to partial computabilities 12/20

Rogers’ Isomorphism Theorem

Ensures that our results do not depend on our choice of an enumeration

Go from an acceptable enumeration to another

Myhill’s isomorphism for fundamental classes
E For A and B two sets of integers, f 1-1 from A to B and g 1-1 from B to A,
we can build h an isomorphism between A and B.

= Rogers’ isomorphism for fundamental classes
< 0 — o o
= Any acceptable enumeration is isomorphic to the canonical one.

2. from total functions to partial computabilities 12/20

Simulation, halt and domigEiifels

primitive recurse CESSMNGD

2. from total functions to partial computabilities

Simulation, halt and domigEiifels

Primitve recursi CEESNGD

Definition:
n—+1 ifm=20
A:mn— < Alm—1,1) ifm>0andn =0
Alm—1,A(m,n —1)) otherwise

Unary version:
Ack : n+— A(n,n)

2. from total functions to partial computabilities

Simulation, halt and domigEiifels

Primitive re_

Ackermann fu

Grows faster t
function

2. from total functions to partial computabilities

Simulation, halt and domigEiifels

Primitive re_

Ackermann fu

Grows faster t
function

Enables us

2. from total functions to partial computabilities

Simulation, halt and domigEiifels

Primitive re_

function

Enables us

x — sim, (e, x, Ack

for some primitive recursive f

2. from total functions to partial computabilities

Simulation, halt and domigEiifels

General case for fundamental classes Primitive r_

Grows faster
function

Enables us

x — sim, (e, x, Ack

for some primitive recursive f

2. from total functions to partial computabilities

Simulation, halt and domigEiifels

General case for fundamental classes Primitive re_

Definition:

For an enumerable class ¢ with sim, and use. functions:
o — C o
B8} = X — max {‘pusec(,.)(O) (i < x}

x — sim, (e, x, Ack

for some primitive recursive f

2. from total functions to partial computabilities

Simulation, halt and domi

General case for fundamental classes

for some primitive rec

2. from total functions to partial computabilities

A recursive jump for fundamental classes

Be? allows us to totally compute any function in c.
Similar to the classical halting problem.

2. from total functions to partial computabilities 14/20

A recursive jump for fundamental classes

8% allows us to totally compute any function in c.
Similar to the classical halting problem.

2. from total functions to partial computabilities 14/20

A recursive jump for fundamental classes

8% allows us to totally compute any function in c.
Similar to the classical halting problem.

2. from total functions to partial computabilities 14/20

3. c-enumerability and c-recursivities

Complexity of sets

Enumerability and repetitiolgi

¢ Capture a class complexity through
< its enumerable sets

3. c-enumerability and c-recursivities

15/20

Enumerability and repetitis

E Capture a class comnblexitv throuah

< its or Every enumerable set is enumerable by a primitive recursive

function.
Enumerate we
Simulate @, using bounded Lt in Kleene’s Normal Form:

(pe,s(x) = F(PW< S-T(e>X)Y)) = SimT(e>X)S)
Enumeration with repetitions:

©e(0), ©e(0), ..., ©c(0), Pe(1), ¥e(2), Pe(2), ...

3. c-enumerability and c-recursivities

Enumerability and repetitiolgi

¢ Capture a class complexity through
< jts enumerable sets

Classical definition not interesting

Enumerable sets are c-enumerable.

3. c-enumerability and c-recursivities

15/20

Enumerability and repetitiolgi

¢ Capture a class complexity through

= Classical
its enumerable sets

Domain

Classical definition not interesting Range

Anoyance

Enumerable sets are c-enumerable.

3. c-enumerability and c-recursivities

Enumerability and repetitiolgi

¢ Capture a class complexity through
< jts enumerable sets

Classical definition not interesting

Anoyance

Enumerable sets are c-enumerable.

3. c-enumerability and c-recursivities

Classical
Domain
Range

Range of a

Enumerability and repetitiolgi

¢ Capture a class complexity through
< jts enumerable sets

Classical definition not interesting

Anoyance

Enumerable sets are c-enumerable.

3. c-enumerability and c-recursivities

Classical
Domain

Range

Range of a 1-1 fun

(partial for finite sets)

Enumerability and repetitiolgi

¢ Capture a class complexity through
< its enumerable sets

Classical definition not interesting

Anoyance

Enumerable sets are c-enumerable.
Range of a 1-1 fun

(partial for finite sets)

Produce
ation

3. c-enumerability and c-recursivities

Enumerability and repetitiolgi

¢ Capture a class complexity through
< jts enumerable sets

Classical definition not interesting

Anoyance

Enumerable sets are c-enumerable.
Range of a 1-1

(partial for finite sets)

A set is c-enumerable if:

5 it is finite
£ Prod
S or it is the range of a 1-1 f € c. ation

Enumeration: (wg),c,,

3. c-enumerability and c-recursivities

Enumerability and repetitiolgi

¢ Capture a class complexity through
< jts enumerable sets

Classical

(0]
§ Class How do we know if a function is 1-12
) We do not.
£ Enun
Check 1-1-ness for each new value
ASEl |f not, the 1-1 prefix defines a finite set
5 it is finite
B
Soritistherange ofa1-1f € c.

Enumeration: (wg),c,,

3. c-enumerability and c-recursivities

c-recursivities

Extend the noti
to a notion of c-recursivity.

3. c-enumerability and c-recursivities 16/20

c-recursivities

Extend the notion
to a notion of c-recursivity.

Classical c
A set E is recursive if:

Its characteri
sive

E and E ar

E can be e

3. c-enumerability and c-recursivities 16/20

c-recursivities

Extend t
to a notion of c-n

Classi
AsetEisre

Its ch
sive

E an

E ca

3. c-enumerability and c-recursivities

X-c-recursivity
c-fundamental characteristic function
weak-c-recursivity

c-enumerable and co-c-enumerable

strong-c-enumerability
c-enumerable increasingly
strong-c-recursivity

Strongly c-enumerable and co-
strongly c-enumerable

16/20

c-recursivities

Exten
to a notion of c-

3. c-enumerability and c-recursivities

X-c-recursivity
c-fundamental characteristic function
weak-c-recursivity

c-enumerable and co-c-enumerable

strong-c-enumerability
c-enumerable increasingly
strong-c-recursivity

Strongly c-enumerable and co-

strongly c-enumerable

These notions are all different, and all
compatible with the classical one

16/20

Noticeable sets and recursive properties

3. c-enumerability and c-recursivities 17/20

Noticeable sets and recursive properties

c

3. c-enumerability and c-recursivities 17/20

Noticeable sets and recursive properties

3. c-enumerability and c-recursivities

4. subcomputabilities

Computability, with holes

c-partial functions

A partial
graph is enum
A graph
set of integers.

4. subcomputabilities

c-partial functions

A partial fu

graph is enume :
A graph of

set of integers.

Ve, G, is the graph in

Enumeration: (¢g)

ecw

4. subcomputabilities

c-partial functions

4. subcomputabilities

A partial fu

graph is enumer: :
A graph of

set of integers.

Ve, G, is the graph ind

Enumeration: (@g) ¢,

; ; =
Fundamental functions are c-partials g

c-partial functions

4. subcomputabilities

A partial functi
graph is enumerable.
A graph of afu
set of integers.

Ve, G, is the graph induc

Enumeration: (@g) ¢,

Fundamental functions are c-partials g"

Growth speed is dominated by funda- =

mental functions e

c-partial functions

musual closure

E Not stable by composition
eorem

4. subcomputabilities

A partial fu

graph is enumer: :
A graph of

set of integers.

Ve, G, is the graph ind

Enumeration: (@g) ¢,

; ; =
Fundamental functions are c-partials g

Growth speed is dominated by funda- =
mental functions 3

c-partial functions

MIsual closure A partial functi
£ Not stable by composition graph is enumerable.
orem

No composition
c contains

(] : -
fonwy | oEeelp) U=
ifn=2p +1

and g :n+— 2n, but not fo g = Bad.

No s’ theorem
c contains f: (e, x) — @e(x) but not all the recursive functions.

Growth speed is dominated by funda- =
mental functions

4. subcomputabilities

c-partial functions
" Unusual closure A partial _
E Not stable by composition graph is enum
Cosf trecrem
E Non-trivial c-creativity/productivity set of integers.

GEfotion,

Ve, G, is the graph i

Enumeration: (@g) ¢,

; ——
Fundamental functions are c-partials 3

Growth speed is dominated by funda- =
mental functions 3

4. subcomputabilities

c-partial functions

Unusual closure
£ Not stable by composition
No s’ theorem

e Non-trivial c-creativity/productivity
e
= notion

Partial Kleene’s second recursion
theorem for a fundamental class c

c For f € c and h c-partial of domain A
£ co-enumerable,

3n st (@f)z = (‘P?(n)) 4 and
(@p) 1a=h

4. subcomputabilities

—————
A
set o

Ve, G is t

Enumeration:

Fundamental functions are c-partials—-_;i’l|

Growth speed is dominated by funda- ?
mental functions

4. subcomputabilities

5. fragments of admissible recursion

Rising above

Fragments above computability

5. fragments of admissible recursion 19/20

Perspectives and conclusion

6. Conclusion 20/20

Perspectives and conclusion

6. Conclusion 20/20

Thank you for your attention.

6. Conclusion 20/20

	Classical computability
	From total functions to partial computabilities
	c-enumerability and c-recursivities
	Subcomputabilities
	Fragments of admissible recursion
	Conclusion

