Towards a fine structure of computabilities

Vers une structure fine des calculabilités

Fabien Givors

under the supervision of Grégory Lafitte and Bruno Durand

Université Montpellier II - CNRS, LIRMM

Montpellier
December 6th 2013

How did we get there?

Explore the structure of recursively enumerable degrees

Find natural objects with complex properties

Get rid of technical proofs

How did we get there?

- Explore the structure of recursively enumerable degrees
- Find natural objects with complex properties
 - Get rid of technical proofs
 - Build models for fragments of computability
- 7 Find out where and when the difficulty of computability arises
- Find a general framework for studying computabilities

1. classical computability

Church, Kleene, Rosser, Turing

Basic operations

$$\mathbf{o}: x \mapsto 0$$

$$\mathbf{s}: \mathbf{x} \mapsto \mathbf{x} + \mathbf{1}$$

$$\mathbf{s}: x \mapsto x + 1$$

 $\mathbf{cond}: x, y, a, b \mapsto \left\{ \begin{array}{ll} a & \text{if } x = y \\ b & \text{otherwise} \end{array} \right.$

1. classical computability

Basic operations

Operations can be composed

$$\mathbf{o}: x \mapsto 0$$

$$\mathbf{s}: \mathbf{x} \mapsto \mathbf{x} + \mathbf{1}$$

$$\mathbf{s}: x \mapsto x + 1$$

 $\mathbf{cond}: x, y, a, b \mapsto \left\{ \begin{array}{ll} a & \text{if } x = y \\ b & \text{otherwise} \end{array} \right.$

$$\mathbf{s} \circ \mathbf{o} = x \mapsto 1$$

Basic operations

Operations can be composed

Complex operations

$$\mathbf{o}: x \mapsto 0$$

$$\mathbf{s}: \mathbf{x} \mapsto \mathbf{x} + \mathbf{1}$$

$$\mathbf{s}: x \mapsto x + 1$$

 $\mathbf{cond}: x, y, a, b \mapsto \left\{ \begin{array}{ll} a & \text{if } x = y \\ b & \text{otherwise} \end{array} \right.$

$$\mathbf{s} \circ \mathbf{o} = x \mapsto 1$$

μ: minimisation

rec_p: primitive recursion

Basic

Oper

The more complex the machine, the more complex the flow.

1. classical computability 4/

Basic operations

Operations can be composed

Complex operations

Execution flow

$$\mathbf{o}: x \mapsto 0$$

$$\mathbf{s}: \mathbf{x} \mapsto \mathbf{x} + \mathbf{x}$$

$$\mathbf{s}: x \mapsto x + 1$$

 $\mathbf{cond}: x, y, a, b \mapsto \left\{ \begin{array}{ll} a & \text{if } x = y \\ b & \text{otherwise} \end{array} \right.$

$$\mathbf{s} \circ \mathbf{o} = x \mapsto 1$$

μ: minimisation

rec_p: primitive recursion

Not necessarily finite

Notations

Enumeration of all the recursive functions, indexed by the natural integers:

$$(\phi_e)_{e\in\omega}$$

Convergence of a function:

$$\varphi_{26}(13) \downarrow = 7$$

Divergence of a function:

$$\phi_{34}(4)\uparrow$$

Equivalence of functions:

$$\varphi_{e_1}(x_1) \cong \varphi_{e_2}(x_2)$$

if both computations diverge or converge to the same value.

Universality and total functions

Recursive universal function

$$\exists u, \varphi_u : (\langle e, x \rangle) \mapsto \varphi_e(x)$$

1. classical computability

Universality and total functions

Recursive universal function

Functions cannot all be total

$$\exists u, \varphi_u : (\langle e, x \rangle) \mapsto \varphi_e(x)$$

$$f: x \mapsto \mathbf{s} \circ \varphi_u (\langle x, x \rangle)$$

$$\exists e, f = \varphi_e$$

$$f(e) \cong \mathbf{s} (\varphi_u (\langle e, e \rangle))$$

$$\cong \varphi_e(e) + 1$$

$$\cong f(e) + 1$$

$$\forall e, x, \phi_u \left(\langle e, x \rangle \right) \cong \phi_e(x) \cong \textit{F}(\ \mu y.\textit{T}(e, x, y))$$

$$\forall e, x, \varphi_u (\langle e, x \rangle) \cong \varphi_e(x) \cong F(\mu y. T(e, x, y))$$

$$\forall \mathsf{e}, \mathsf{x}, \varphi_u\left(\langle \mathsf{e}, \mathsf{x} \rangle\right) \cong \varphi_\mathsf{e}(\mathsf{x}) \cong \mathit{F}\left(\mu \mathsf{y}. \mathit{T}(e, \mathsf{x}, \mathsf{y}) \right)$$

$$\forall e, x, \varphi_u (\langle e, x \rangle) \cong \varphi_e(x) \cong F(\mu y.T(e, x, y))$$

$$\forall e, x, \varphi_u(\langle e, x \rangle) \cong \varphi_e(x) \cong F(\psi_y, T(e, x, y))$$

Canonical form and interpretation

There exist an elementary function F and a recursive primitive predicate T such that: (leene's Normal F

$$\forall e, x, \varphi_u (\langle e, x \rangle) \cong \varphi_e(x) \cong F(\psi_v, T(e, x, y))$$

Only μ operator **Function** index Execution flow Input

Execution flow

Finite?

Bounded?

1. classical computability

 s_n^m and Fixed Point

There exists a recursive function s_n^m such that $\forall m, n, e$,

$$\varphi_{\mathbf{e}}(\langle x_1,\ldots,x_n,y_1,\ldots,y_m\rangle)\cong\varphi_{\mathbf{s}_n^m(\mathbf{e},x_1,\ldots,x_n)}(\langle y_1,\ldots,y_m\rangle)$$

There exists a recursive function s_n^m such that $\forall m, n, e$,

$$\varphi_{\mathbf{e}}(\langle x_1,\ldots,x_n,y_1,\ldots,y_m\rangle)\cong\varphi_{s_n^m(\mathbf{e},x_1,\ldots,x_n)}(\langle y_1,\ldots,y_m\rangle)$$

For each total recursive function f we can recursively compute an n such that:

$$\forall x, \phi_n(x) \cong \phi_{f(n)}$$

at:

There exists a recursive function s_n^m such that $\forall m, n, e$,

Let f be a function such that $\varphi_{f(n)}: x \mapsto \varphi_n(x) + 1$. Then there is an n verifying:

 $\forall x, \varphi_n(x) \cong \varphi_{f(n)}(x) \cong \varphi_n(x) + 1$

which is an index for the nowhere defined function.

 $(\Lambda) \Psi n(\Lambda) = \Psi f(n)$

For

Fixed point

s_n^m and Fixed Point

2. from total functions to partial computabilities

 $An\ interesting\ trade-off$

Class of total functions c

Class of total functions c

Constant functions

$$\forall n, \forall x, c_n(x) = n$$

Class of total functions c

Constant functions

Projection and pairing functions

$$\forall n, \forall x, c_n(x) = n$$

$$\langle \cdot, \cdot \rangle, \pi_1^2, \pi_2^2 \in c,$$

 $\forall n_1, n_2, \pi_i^2 (\langle n_1, n_2 \rangle) = n_i$

Class of total functions c

Constant functions

Projection and pairing functions

Conditional operator

$$\forall n, \forall x, \mathfrak{c}_n(x) = n$$

$$\langle \cdot, \cdot \rangle, \pi_1^2, \pi_2^2 \in c,$$

 $\forall n_1, n_2, \pi_i^2 (\langle n_1, n_2 \rangle) = n_i$

cond

Class of total functions c

Constant functions

Projection and pairing functions

Conditional operator

Stable under composition

$$\forall n, \forall x, \mathfrak{c}_n(x) = n$$

$$\langle \cdot, \cdot \rangle, \pi_1^2, \pi_2^2 \in c,$$

 $\forall n_1, n_2, \pi_i^2 (\langle n_1, n_2 \rangle) = n_i$

cond

 $\forall f, g \in c, f \circ g \in c.$

Primitive recursive class: p
Smallest closed class stable by prim-

itive recursion: rec

2. from total functions to partial computabilities

For $g, h \in p$,

Smal
$$\subseteq$$
 lossed class state $f: n, \vec{x} \mapsto \mathbf{rec}_{p}(g, h, n, \vec{x}) \in p$,

$$\left(h(\vec{x}) \right)$$

with $\mathbf{rec}_{\mathrm{p}}(g,h,n,\vec{x})$ such that: $f(n,\vec{x}) = \left\{ \begin{array}{l} h(\vec{x}) \\ g(n,\vec{x},f) \end{array} \right.$ $f(n, \vec{x}) = \begin{cases} h(\vec{x}) & \text{if } n = 0, \\ g(n, \vec{x}, f(n-1, \vec{x})) & \text{otherwise.} \end{cases}$

Primitive recursion

Primitive recursive class: p
Smallest closed class stable by primitive recursion: rec

 α -recursive classes: c_{α}

Smallest closed class stable by α re-

cursion: \mathbf{rec}_{α}

Prim Smal For $g, h \in c_{\alpha}$,

$$f:n,ec{x}\mapsto \mathbf{rec}_{lpha,\lhd}(g,h,n,ec{x})\in \mathtt{c}_{lpha}$$

itive lois

with $\mathbf{rec}_{\alpha, \triangleleft}(g, h, n, \vec{x})$ such that:

ω-re Smal

$$f(n, \vec{x}) = \left\{ egin{array}{ll} g(n, \vec{x}, f(\theta(n, \vec{x}), \vec{x})) & ext{if } \overline{0} \lhd n ext{ and } \theta(n, \vec{x}) \lhd n, \\ h(n, \vec{x}) & ext{otherwise,} \end{array}
ight.$$

where $\overline{\beta}$ stands for the ordinal notation (in \triangleleft) for β .

Recursion schemata

Left behind

9 Universal function not in c

No unbounded search

Limited function growth (e.g. Ackermann function not in p)

Implies limited power

Toolbox for indices:

Compute new indices for a function

Compute index of composition

Toolbox for indices:

Compute new indices for a function

Compute index of composition

Requirements:

padding function: p

$$\forall \mathsf{e}, (\mathsf{p}(\mathsf{e}) > \mathsf{e}) \wedge (\phi^{\circ}_{\mathsf{p}(\mathsf{e})} = \phi^{\circ}_{\mathsf{e}})$$

composition function: c

$$\forall e_1, e_2, \phi_{\mathfrak{c}(e_1, e_2)}^{\mathfrak{C}} = \phi_{e_1}^{\mathfrak{C}} \circ \phi_{e_2}^{\mathfrak{C}}$$

Toolbox for indices:

Compute new indices for a function

Compute index of composition

Toolbox for simulation:

Check the validity of a flow

Bound the flow of a given function

Requirements:

padding function: p

$$\forall \mathsf{e}, (\mathsf{p}(\mathsf{e}) > \mathsf{e}) \wedge (\phi_{\mathsf{p}(\mathsf{e})}^{\scriptscriptstyle \mathbb{C}} = \phi_{\mathsf{e}}^{\scriptscriptstyle \mathbb{C}})$$

composition function: c

$$\forall e_1, e_2, \phi_{\mathfrak{c}(e_1, e_2)}^{\circ} = \phi_{e_1}^{\circ} \circ \phi_{e_2}^{\circ}$$

Toolbox for indices:

Compute new indices for a function

Compute index of composition

Toolbox for simulation:

Check the validity of a flow

Bound the flow of a given function

Requirements:

padding function: p

$$\forall e, (p(e) > e) \land (q_{p(e)}^{c} = q_{e}^{c})$$

composition function: c

$$\forall e_1, e_2, \phi_{\mathfrak{c}(e_1, e_2)}^{\mathfrak{c}} = \phi_{e_1}^{\mathfrak{c}} \circ \phi_{e_2}^{\mathfrak{c}}$$

step-by-step simulation: simc

$$\forall x, e, \exists n, \phi_e^{\circ}(x) = sim_{\circ}(e, x, n)$$

cost function: usec

$$\forall x, e, \phi_e^c(x) = \operatorname{sim}_c(e, x, \phi_{\operatorname{use}_c(e)}^c(x))$$

Fundamental classes

A restriction of closed classes suiting our needs

Basis functions

Contains all the primitive recursive functions

Coding functions

Primitive recursive coding schema

Pairing functions

Projection functions

Closure

Stable by composition

Stable by primitive recursion

Enumeration

Tied to an enumeration ϕ^{c} (recursive) which is not in the class

Def: Fundamental class

 $\subseteq S_n^m$ for fundamental classes

Note: Primitive recursion is needed in order to obtain an homogeneous s.

 $\subseteq S_n^m$ for fundamental classes

Note: Primitive recursion is needed in order to obtain an homogeneous s.

Still no recursion theorem

It is actually impossible.

Recall our previous example:

Let f be a function such that $\varphi_{f(n)}: x \mapsto \varphi_n(x) + 1$. Then there is an n verifying:

$$\forall x, \varphi_n(x) \cong \varphi_{f(n)}(x) \cong \varphi_n(x) + 1$$

which is an index of the nowhere defined function. $\stackrel{\circ}{\mathbb{Z}}$

Such a function cannot be total.

Ensures that our results do not depend on our choice of an enumeration

Ensures that our results do not depend on our choice of an enumeration

Go from an acceptable enumeration to another

Ensures that our results do not depend on our choice of an enumeration

Go from an acceptable enumeration to another

Myhill's isomorphism for fundamental classes

For A and B two sets of integers, f 1-1 from A to B and g 1-1 from B to A, we can build h an isomorphism between A and B.

Ensures that our results do not depend on our choice of an enumeration

Go from an acceptable enumeration to another

Myhill's isomorphism for fundamental classes

For A and B two sets of integers, f 1-1 from A to B and g 1-1 from B to A, we can build h an isomorphism between A and B.

Rogers' isomorphism for fundamental classes

Any acceptable enumeration is isomorphic to the canonical one.

Primitive recursive case

Primitive recursive case

Definition:

Ackermann function

$$A:m,n\mapsto \left\{ egin{array}{ll} n+1 & ext{if } m=0 \ A(m-1,1) & ext{if } m>0 ext{ and } n=0 \ A(m-1,A(m,n-1)) & ext{otherwise} \end{array}
ight.$$

Unary version:

$$Ack : n \mapsto A(n, n)$$

Primitive recursive case

Ackermann function properties

Grows faster than any primitive recursive function

Primitive recursive case

Ackermann function properties

Grows faster than any primitive recursive function

Enables us to bound the size of their flow

Primitive recursive case

Ackermann function properties

Grows faster than any primitive recursive function

Enables us to bound the size of their flow

Universal simulation with sim_p and use_p :

$$x \mapsto \operatorname{sim}_{p}(e, x, \operatorname{Ack}(f(\operatorname{use}_{p}(e), x)))$$

for some primitive recursive f

General case for fundamental classes

Primitive recursive case

Ackermann function properties

Grows faster than any primitive recursive function

Enables us to bound the size of their flow

Universal simulation with simp and usep:

$$x \mapsto \operatorname{sim}_{p}(e, x, \operatorname{Ack}(f(\operatorname{use}_{p}(e), x)))$$

for some primitive recursive f

General case for fundamental classes

Primitive recursive case

Definition:

For an enumerable class c with simc and usec functions:

$$extstyle extstyle ext$$

Increasing version

 $x \mapsto sim_{\scriptscriptstyle 0}(e, x, Ack(f(use_{\scriptscriptstyle 0}(e), x)))$

for some primitive recursive f

sive

ow e_p:

General case for fundamental classes

Busy Beaver properties

Grows faster than any c-fundamental function

Enables us to bound the size of their flow

Universal simulation with sim_c and use_c:

$$x \mapsto \operatorname{sim}_{c}(e, x, \operatorname{BB}_{c}^{\diamond}(\operatorname{s}_{1}^{1}(e, x)))$$

Primitive recursive case

Ackermann function properties

Grows faster than any primitive recursive function

Enables us to bound the size of their flow

Universal simulation with simp and usep:

$$\mathbf{x} \mapsto \mathrm{sim}_{\mathrm{p}}(\mathbf{e}, \mathbf{x}, \mathrm{Ack}(\mathbf{f}(\mathrm{use}_{\mathrm{p}}(\mathbf{e}), \mathbf{x})))$$

for some primitive recursive f

BBc allows us to totally compute any function in c. Similar to the classical halting problem.

BBc allows us to totally compute any function in c. Similar to the classical halting problem.

Jump of c: $\bigcirc = c[BB_c^{\phi}]$

Still a fundamental class

φ. has a universal function for c.

BBc allows us to totally compute any function in c. Similar to the classical halting problem.

Jump of c: $\bigcirc = c[\mathtt{BB}_\mathtt{C}^\phi]$

Still a fundamental class

φ. has a universal function for c.

Kleene unbalanced theorem for a fundamental class c and any fundamental function $f \in c$:

$$\exists n, \phi_n^{\mathbb{O}} \cong \phi_{f(n)}^{\circ}$$

Ŏ

BBc allows us to totally compute any function in c. Similar to the classical halting problem.

Jump of c: $\bigcirc = c[BB_c^{\phi}]$

Still a fundamental class

Φ. has a universal function for c.

Kleene unbalanced theorem for a fundamental class c and any fundamental function $f \in c$:

$$\exists n, \phi_n^{\mathbb{O}} \cong \phi_{f(n)}^{c}$$

Non-trivial sets and Rice's theorem

c-enumerability and c-recursivities

Capture a class complexity through its enumerable sets 2. from total functions to partial computabilities

Capture a class complexity through

Every enumerable set is enumerable by a primitive recursive function.

 $\frac{\Omega}{\sigma}$ Enumerate \mathbf{w}_{e}

its er

Simulate ϕ_e using bounded μ in Kleene's Normal Form:

$$\varphi_{e,s}(x) \cong F(\mu y \leq s.T(e,x,y)) \cong sim_T(e,x,s)$$

 $\phi_{e,s}(x) \cong F(\mu y \leqslant s)$ Enumeration with repetitions:

$$\phi_e(0),\phi_e(0),\ldots,\phi_e(0),\phi_e(1),\phi_e(2),\phi_e(2),\ldots$$

Capture a class complexity through its enumerable sets

Classical definition not interesting

Enumerable sets are c-enumerable.

Capture a class complexity through

Classical definition not interesting

Enumerable sets are c-enumerable.

Classical characterisations

Domain of a partial function

Range of a partial function

Capture a class complexity through

Classical definition not interesting

Enumerable sets are c-enumerable.

Classical characterisations

Domain of a partial function

Range of a partial function

Range of a total function

Capture a class complexity through

Classical definition not interesting

Enumerable sets are c-enumerable.

Classical characterisations

Domain of a partial function

Range of a partial function

Range of a total function

Range of a 1-1 function (partial for finite sets)

Capture a class complexity through its enumerable sets

Classical definition not interesting

Enumerable sets are c-enumerable.

Classical characterisations

Domain of a partial function

Range of a partial function

Range of a total function

Range of a 1-1 function (partial for finite sets)

Produce a new element on each iteration

Enumerability and repetitions

Capture a class complexity through

Classical definition not interesting

Enumerable sets are c-enumerable.

A set is c-enumerable if:

it is finite

or it is the range of a 1-1 $f \in c$.

Enumeration: $(\mathbf{w}_{e}^{c})_{e \in \omega}$

Classical characterisations

Domain of a partial function

Range of a partial function

Range of a total function

Range of a 1-1 function (partial for finite sets)

Produce a new element on each iteration

Enumerability and repetitions

Capture a class complexity through

Classical characterisations

Domain of a partial function

Class

How do we know if a function is 1-1?

We do not.

Enun

Check 1-1-ness for each new value

A set

If not, the 1-1 prefix defines a finite set

it is finite

Ĭ

 \overline{g} or it is the range of a 1-1 $f \in c$.

Enumeration: $(\mathbf{w}_{e}^{c})_{e \in \omega}$

Produce a new element on each iteration

Extend the notion of c-enumerability to a notion of c-recursivity. 2. from total functions to partial computabilities

Extend the notion of c-enumerability to a notion of c-recursivity.

Classical characterisations

A set E is recursive if:

Its characteristic function χ_E is recursive

E and \overline{E} are enumerable

E can be enumerated increasingly

Extend the notion of c-enumerability to a notion of c-recursivity.

Classical characterisations

A set E is recursive if:

Its characteristic function χ_E is recursive

E and \overline{E} are enumerable

E can be enumerated increasingly

Extend the notion of c-enumerability to a notion of c-recursivity.

Classical characterisations

A set E is recursive if:

Its characteristic function χ_E is recursive

E and \overline{E} are enumerable

E can be enumerated increasingly

compatible with the classical one

Noticeable sets and recursive properties

Noticeable sets and recursive properties

Noticeable sets and recursive properties

Diagonal set

$$\kappa_{\text{C}}^{\phi} = \{e : \phi_{\text{e}}^{\text{C}}(e) > 0\}$$

Unary Ackermann range

A STATE OF THE STA

 $\stackrel{\circ}{\rightharpoonup}$ A = range(Ack)

Busy Beaver range

$$B_p = \operatorname{range}(BB_p^{\phi})$$

 $B_{\rm C} = {\rm range}({_{\rm BB_{\rm C}}^{\phi}})$

	r.e.	co-r.e.	р-е	s-p-e	со-р-е	co-s-p-e	w-p-rec	s-p-rec	χ-p-rec
к	1	×	1	×	×	×	×	×	×
κ _p	1	√	1	×	1	×	1	×	×
A	1	1	×	×	1	✓	×	×	1
Bp	1	1/4/1/00	×	×	√	√	×	×	1
	r.e.	co-r.e.	с-е	s-c-e	со-с-е	co-s-c-e	w-c-rec	s-c-rec	χ-c-rec
к	1	7/X	1	×	×	×	×	×	×
Κ¢	1		1	×	1	×	1	×	×
Bc	1	1	×	×	1	1	×		1

3. subcomputabilities

Computability, with holes

A partial function is a function whose graph is enumerable.

A graph of a function is a well-formed set of integers.

A partial function is a function whose graph is enumerable.

A graph of a function is a well-formed set of integers.

 $orall e, \mathcal{G}_{e}$ is the graph induced by $\mathbf{w}_{e}^{\text{c}}$

Enumeration: $(\phi_e^c)_{e \in \omega}$

A partial function is a function whose graph is enumerable.

A graph of a function is a well-formed set of integers.

 $\forall e, \mathcal{G}_e$ is the graph induced by \mathbf{w}_e^c

Enumeration: $(\phi_e^c)_{e \in \omega}$

Fundamental functions are c-partials

A partial function is a function whose graph is enumerable.

A graph of a function is a well-formed set of integers.

 $\forall e, \mathcal{G}_e$ is the graph induced by \mathbf{w}_e^c

Enumeration: $(\varphi_e^c)_{e \in \omega}$

Fundamental functions are c-partials

Growth speed is dominated by fundamental functions

Unusual closure

Not stable by composition No s_n^m theorem

A partial function is a function whose graph is enumerable.

A graph of a function is a well-formed set of integers.

 $\forall e, \mathcal{G}_e$ is the graph induced by \mathbf{w}_e^c

Enumeration: $(\varphi_e^c)_{e \in \omega}$

Fundamental functions are c-partials

Growth speed is dominated by fundamental functions

Unusual closure

Not stable by composition

No s_n^m theorem

A partial function is a function whose graph is enumerable.

med

No composition

c contains

$$f: n \mapsto \left\{ egin{array}{ll} \mathrm{BB}_{\mathbb{C}}^{\emptyset}(p) & \mathrm{if} \ n = 2p \\ p & \mathrm{if} \ n = 2p + 1 \end{array} \right.$$

and $g: n \mapsto 2n$, but not $f \circ g = BB_0^{\phi}$.

No s_n^m theorem

c contains $f: \langle e, x \rangle \mapsto \varphi_e(x)$ but not all the recursive functions.

Growth speed is dominated by fundamental functions

Unusual closure

Not stable by composition No s_n^m theorem

Non-trivial c-creativity/productivity notion

A partial function is a function whose graph is enumerable.

A graph of a function is a well-formed set of integers.

 $orall e, \mathcal{G}_e$ is the graph induced by $\mathbf{w}_e^{\mathtt{c}}$

Enumeration: $(\varphi_e^c)_{e \in \omega}$

Fundamental functions are c-partials

Growth speed is dominated by fundamental functions

Unusual closure

Not stable by composition No s_n^m theorem

Non-trivial o-creativity/productivity

Partial Kleene's second recursion theorem for a fundamental class c

For $f \in c$ and h c-partial of domain A co-enumerable,

$$\exists n \text{ s.t. } (\varphi_n^\circ)_{\mid \overline{A}} \cong (\varphi_{f(n)}^\circ)_{\mid \overline{A}} \text{ and } (\varphi_n^\circ)_{\mid A} \cong h$$

A partial function is a function whose graph is enumerable.

A graph of a function is a well-formed set of integers.

 $\forall e, \mathcal{G}_e$ is the graph induced by $\mathbf{w}_e^{\mathtt{c}}$

Enumeration: $(\varphi_e^c)_{e \in \omega}$

Fundamental functions are c-partials

Growth speed is dominated by fundamental functions

Let $f = \varphi_h^c \in c$ and $h = \varphi_a^c$ c-partial of domain A co-enumerable.

Unus Not s

Goal: show that there is a c-partial fixed-point with fundamental lose computable index.

med

The following function is c-partial as a recursive extention of a cpartial:

Nonnotic

$$u\mapsto \psi_{\scriptscriptstyle X}(u)=\left\{egin{array}{ll} \phi^{\scriptscriptstyle {\scriptscriptstyle C}}_{a}(u) & \mbox{if }u\in A\ \phi^{\scriptscriptstyle {\scriptscriptstyle C}}_{\phi^{\scriptscriptstyle {\scriptscriptstyle C}}_{a}(x)}(u) & \mbox{otherwise}. \end{array}
ight.$$

Particle Its index is computable from x in c, by a function d_a of index i_{d_a} . Let $e_a = \mathbf{comp}(i_f, i_{d_a})$ be an index for $f \circ d_a$.

For f co-e

$$\forall u, u \mapsto \phi_{\textit{d}_{a}(e_{a})}^{\texttt{c}}(u) \cong \left\{ \begin{array}{ll} \phi_{a}^{\texttt{c}}(u) & \text{if } u \in \textit{A} \\ \phi_{\phi_{e_{a}}^{\texttt{c}}(e_{a})}^{\texttt{c}}(u) \cong \phi_{\textit{f} \circ \textit{d}_{a}(e_{a})}^{\texttt{c}}(u) & \text{otherwise.} \end{array} \right.$$

Choose $n = d_a(e_a)$, then: $\varphi_n^{\circ} \cong \varphi_{f(n)}^{\circ}$ on \overline{A} and $\varphi_n^{\circ} \cong \varphi_a^{\circ} \cong h$ on A. Hence, *n* is a partial fixed-point for *f*.

Reducibility notions

 $A \leqslant_{\circ-T}^{\chi} B$

If $\chi_A \in c[\chi_B]$.

 $A \leqslant_{c-T}^w B$

If $\forall e_B, e_{\overline{B}}, \exists e_A, e_{\overline{A}} \in c[e_B, e_{\overline{B}}].$

 $A \leqslant_{c-e}^{s} B$

If $\exists \mathfrak{p}_A \in \mathfrak{c}[\mathfrak{p}_B]$.

 $A \leqslant_{c-T}^{s} B$

If $\exists \mathfrak{p}_A, \mathfrak{p}_{\overline{A}} \in \mathfrak{c}[\mathfrak{p}_B, \mathfrak{p}_{\overline{B}}].$

$$\kappa_{\text{c}} = \{e : \phi_{e}^{\text{c}}(e) \downarrow \}$$

κ_c is many-one-complete via c-partial

Reducibility notions

 $A \leqslant_{\circ-T}^{\chi} B$

If $\chi_A \in c[\chi_B]$.

 $A \leqslant_{c-T}^w B$

If $\forall e_B, e_{\overline{B}}, \exists e_A, e_{\overline{A}} \in c[e_B, e_{\overline{B}}].$

 $A \leqslant_{c-e}^{s} B$

If $\exists \mathfrak{p}_A \in \mathfrak{c}[\mathfrak{p}_B]$.

 $A \leqslant_{c-T}^{s} B$

If $\exists \mathfrak{p}_A, \mathfrak{p}_{\overline{A}} \in \mathfrak{c}[\mathfrak{p}_B, \mathfrak{p}_{\overline{B}}].$

$\kappa \leqslant_m \kappa_c$ via a c-fundamental reduction

For a and z such that ϕ_a^c and ϕ_z^c are resp. never or always null, and $f_x \in c$ such that $\forall e$:

$$\phi_{f_x(e)}^{\circ}: y \mapsto \begin{cases}
\varphi_x(x) & \text{if } y = a \text{ or } y = e \\
0 & \text{otherwise.}
\end{cases}$$

Let *A* be the strongly-c-enumerable set $\{p^{2n}(z): n>0\}$, and *h* a function null on *A* and undefined on \overline{A} .

By our partial Kleene, we have:

$$\varphi_n^{\circ}: y \mapsto \left\{ egin{array}{ll} 0 & ext{if } y \in A \\ \varphi_{f_n(n)}^{\circ}(y) & ext{otherwise.} \end{array} \right.$$

By case analysis we can verify that $n \in \kappa_{c} \leftrightarrow x \in \kappa$, with n being c-fundamentally computable from x.

4. towards a fine structure of computabilities

Rising above

Hyperstructure of fundamental classes

Relativisations of Kleene's $\mathcal O$ and Hyperarithmetic sets

A notion of c-recursive orders (ordinals)

A fine hierarchy of c-degrees

Conjecture

A bottom-up (complexity-wise) construction of enumerable degrees

Fragments above computability

The case of Σ -recursion

Functions over sets in admissible levels of Gödel's L hierarchy

An enumeration $\left(\mathfrak{q}_{e}^{\mathbb{A}}\right)_{e\in\alpha}$ of Δ_{0} (α -finite) sets Plays the role of fundamental functions

An enumeration $\left(\phi_e^{\mathbb{A}}\right)_{e\in\alpha}$ of Σ_1 (α -enumerable) sets Plays the role of partial functions

Preliminary results

 s_n^m -like theorem

Fixed-point theorem

Perspectives and conclusion A general computability framework for studying subrecursion and beyond 5. Conclusion

Perspectives and conclusion

A general computability framework

for studying subrecursion and beyond

Applications

Relativised notion of Kolmogorov complexity

General fine structure

Study of the c-recursive ordinals

Ordinal iterations of the jump

Proof theory

Links between c-degrees and honest degrees

Yielding results about minimal independent statements using c classes?

Thank you for your attention. Villeneuve De Berg: F. Givors Gears: D. Proulx Calanques: B. Monginoux Pic Saint Loup: Ophrys34 Moon: Thomas Bresson Punched card: José Antonio González Nieto Giraffe: Rob Hooft Railway tracks: Arne Hückelheim 5. Conclusion