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1. classical computability

Church, Kleene, Rosser, Turing
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€ There exist an elementary function F and a recursive prim-
o
- jtive predicate T such that:

Ve, x, @, ((e,x>) = (pe(X) =1 wy.T(e,x,y))

Fleene’s Norma
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Execution flow
< Finite?
Bounded?
L

1. classical computability



. .Sh apd Fix?d Point







Example

Let f be a function such that @y(,) : x = @, (x) + 1. Then there is

an n verifying:

W 0nl) = oy () = @al) £1

which is an index for the nowhere defined function.
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An interesting trade-off
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Class of total functions c

Constant functions

Projection and pairing functions

e

Conditional operator

Stable under composition

—
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S Primitive recursive class: p
‘c Smallest closed class stable by prim-
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A itive recursion: rec,
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S PHm Forg,h € p,
E Smal f:n,X — recy(g,h,n,x) € p,

8 itive | : -
G ith rec, (g, h,n,X) such that:

Hn,7) = h(x) if n =0,
0 g(n, X, f(n—1,X))  otherwise.
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x-recursive classes: cy
Smallest closed class stable by « re-
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Forg,h € cy,

S Prim
= Smal f:n,X — recyq(g,h,n,X) € cy

ef

Q itive |
i recy 4(g, h,n,X) such that:

5 x-re A g(n,x,f(0(n,x),x)) if0<nandB(n,x)<n,
= Smal f(n,X) = o, .

£ sma h(n,X) otherwise,

G“’ cursi

where [ stands for the ordinal notation (in <) for {.
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Recall our previous example:

Let f be a function such that @) : X = @p (x) + 1. Then there is
an n verifying:

. ; VX) (Pn(X) = Pt(n) (X) = (Pn(X) +1
5
" which is an index of the nowhere defined function.

)
)

- Such a function cannot be total.
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Definition:

n—+1 ifm=20
A:mni— < Alm—1,1) ifm>0andn =0
A(m—1,A(myn—1)) otherwise

Unary version:
Ack : n+— A(n,n)
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Definition:

For an enumerable class ¢ with sim, and use; functions:

B8] = X — max {‘pﬁsec(,)(o) 1P < x} + x

Increasing version
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General case for fundamental classes

eaver properties

s faster than any c-fundamental
tion

S Enables us to bound the size of their flow

versal simulation with sim. and use.:

ims (e, x, 888 (s (e, x)))
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Capture a class comnlexitv throiiah
Every enumerable set is enumerable by a primitive recursive

function.

Enumerate we
Simulate @, using bounded W in Kleene’s Normal Form:

(Pe,s(x) — F(Wé S-T(e)X>Y)) = SimT(e)X)S)

Enumeration with repetitions:

Enumerable sets and

©e(0), ©c(0), ..., ©c(0), (1), @e(2), @e(2),. ..
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Capture a class complexity through

ble sets
3 partial function

How do we know if a function is 1-1?
We do not.

Check 1-1-ness for each new value

If not, the 1-1 prefix defines a finite set

ment on each iter-
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Noticeable sets and recursive properties

2. from total functions to. partial computabilities
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Computability, with holes
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A partial function is a function whose
aph is enumerable.

composition

A graph of a function is a well-formed
set of integers.

" Ve, G, is the graph induced by w;

iﬂmeration: AR
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c-partial functions

m
numer:

A { mi(p) ifn=2p

No composition
¢ contains

iftn =2p +1

and g : n — 2n, but not fo g = B&d.

No s theorem
c contains f : {e,x) — @ (x) but not all the recursive functions.
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c-partial functions

A partial function is a function whose
is enumerable.

composition

A graph of a function is a well-formed
set of integers.

ativity/productivity

" Ve, G, is the graph induced by w;

1:nWeration: AR
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c-partial functions

composition

ativity/productivity

cond recursion
amental class ¢

h c-partial of domain A
e!

3. subcomputabilities

A graph of a function is a well-formed
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Letf = 4),-“; € cand h = @; c-partial of domain A co-enumerable.

Goal: show that there is a c-partial fixed-point with fundamental jose
computable index.
The following function is c-partial as a recursive extention of a c-
partial:
[ oglu) ifueA
R — { (pfpcm (u) otherwise.

Its index is computable from x in ¢, by a function d, of index /g, .
Let e, = comp(is, ig, ) be an index for f o dj.

o5 (u) ifueA

Pos (o) (U) = Py, (q,) (u)  otherwise.

Yu,u @y o, () = {

Choose n = dj,(e,), then:

P = 9f onAand @5 = @S = honA.
Hence, n is a partial fixed-point for f.
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"’ﬁ xo ={e: @c(e) |}

[es, ¢5].
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Reducibilities and set completeﬁss

K <m Xc via a c-fundamental reduction
For a and z such that @ and @3 are resp. never or always null, and
f, € ¢ such that Ve:

. ©x(x) ify=aory=e
oty
Prie) Y { 0 otherwise.

Let A be the strongly-c-enumerable set {y*"(z) : n > 0}, and h a

function null on A and undefined on A.
By our partial Kleene, we have:

0 ify € A
(pfx(n) (y) otherwise.

By case analysis we can verify that n € k; < x € X, with n being
c-fundamentally computable from x.

3
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Rising above
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re of fundamental classes

Relativisations of Kleene’s O and Hyperarithmetic sets
A notion of c-recursive orders (ordinals)
-degrees

Conjecture
&Eom-up (complexity-wise) construction of enumerable degrees
- kR i



bove computability

The case of X-recursion

W‘ over sets in admissible levels of Gédel’s L hierarchy

An enumeration (@f})ee“ of Ag (x-finite) sets

(Bl he roleoffndamenta uncons

An enumeration ((pf)eeoc of X1 (ct-enumerable) sets
the role of partial functions

e P

Preliminary results
sp'-like theorem
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