Towards a fine structure of computabilities

Vers une structure fine des calculabilités

Fabien Givors

under the supervision of Grégory Lafitte and Bruno Durand
Université Montpellier Il - CNRS, LIRMM

Montpellier
December 6™ 2013

How did we get there?

How did we get there?

1. classical computability

Church, Kleene, Rosser, Turing

Bl —y

Basic operations \ otherwise

—

1. classical computability

ifva—y

Basic operations \ otherwise

—

Operations can be composed

1. classical computability

ifva—y

Basic operations \ otherwise

—

Operations can be composed

Complex operations
——

1. classical computability

Basic

Oper

Com

The more complex the machine, the more complex the flow.

1. classical computability

Bl —y

Basic operations \ otherwise

—

Operations can be composed

Complex operations
——

Execution flow

1. classical computability

Recursive universal function

1. classical computability

Recursive universal function
.

Functions cannot all be total
j

1. classical computability

€ There exist an elementary function F and a recursive prim-
itive predicate T such that:

Ve, x, @, ((e,x>) = (pe(X) =1 FW-T(e)X)Y))

ene’s Normal Fo

F

1. classical computability

€ There exist an elementary function F and a recursive prim-
itive predicate T such that:

Ve, x, @, ((e,x>) = (pe(X) =1 FW-T(e)X 2)

ene’s Normal Fo

F

1. classical computability

€ There exist an elementary function F and a recursive prim-
itive predicate T such that:

Ve, x, @, ((e,x>) = (pe(X) =1 FW-T(e)X y))

ene’s Normal Fo

F

1. classical computability

€ There exist an elementary function F and a recursive prim-
itive predicate T such that:

Ve, x, @, ((e,x>) = (pe(X) =1 FW-T(e)X y))

ene’s Normal Fo

F

1. classical computability

€ There exist an elementary function F and a recursive prim-
itive predicate T such that:

Ve, x, @, ((e,x>) = (pe(X) =1 FW-T(e)X y))

ene’s Normal Fo

F

1. classical computability

€ There exist an elementary function F and a recursive prim-
o
- jtive predicate T such that:

Ve, x, @, ((e,x>) = (pe(X) =1 wy.T(e,x,y))

Fleene’s Norma

|

Execution flow
< Finite?
Bounded?
L

1. classical computability

. .Sh apd Fix?d Point

Example

Let f be a function such that @y(,) : x = @, (x) + 1. Then there is

an n verifying:

W 0nl) = oy () = @al) £1

which is an index for the nowhere defined function.

2. from total functions to partial computabilities

An interesting trade-off

SR
2. from total functions to partial computabilities

Class of total functions c

2. from total functions to partial computabilities

Class of total functions c

Constant functions

2. from total functions to partial computabilities

Class of total functions c

Constant functions

Projection and pairing functions

2. from total functions to partial computabilities

Class of total functions c

Constant functions

Projection and pairing functions

Conditional operator

—

2. from total functions to partial computabilities

Class of total functions c

Constant functions

Projection and pairing functions

e

Conditional operator

Stable under composition

—

2. from total functions to partial computabilities

S Primitive recursive class: p
‘c Smallest closed class stable by prim-

=
A itive recursion: rec,

2. from total functions to partial computabilities

S PHm Forg,h € p,
E Smal f:n,X — recy(g,h,n,x) € p,

8 itive | : -
G ith rec, (g, h,n,X) such that:

Hn,7) = h(x) if n =0,
0 g(n, X, f(n—1,X)) otherwise.

2. from total functions to partial computabilities

5 Prim
=
‘s Smal
=
f0)

G itive |

2. from total functions to partial computabilities

S Primitive recursive class: p
‘c Smallest closed class stable by prim-

=
A itive recursion: rec,

f

x-recursive classes: cy
Smallest closed class stable by « re-

1on

it

C
O cursion: recy

efi

f

2. from total functions to partial computabilities

Forg,h € cy,

S Prim
= Smal f:n,X — recyq(g,h,n,X) € cy

ef

Q itive |
i recy 4(g, h,n,X) such that:

5 x-re A g(n,x,f(0(n,x),x)) if0<nandB(n,x)<n,
= Smal f(n,X) = o, .

£ sma h(n,X) otherwise,

G“’ cursi

where [stands for the ordinal notation (in <) for {.

2. from total functions to partial computabilities

finition

5]

2. from total functions to partial computabilities

Left behind

Toolbox for indices:

es

2 Compute new indices for a function

Ind

Compute index of composition

2. from total functions to partial computabilities

Toolbox for indices:
(2]

(0]
£ Compute new indices for a function

Wndex of composition

2. from total functions to partial computabilities

Toolbox for indices:

Ices

Compute new indices for a function

m}e index of composition

Ind

Toolbox for simulation:

tion

= Check the validity of a flow
=

We flow of a given function

2. from total functions to partial computabilities

Toolbox for indices:

Ices

Compute new indices for a function

Wte index of composition

Toolbox for simulation:

Ind

tion

= Check the validity of a flow
=

w_the flow of a given function

2. from total functions to partial computabilities

Fundamental classes

How far did we get?

How far did we get?

How far did we get?

Recall our previous example:

Let f be a function such that @) : X = @p (x) + 1. Then there is
an n verifying:

. ; VX) (Pn(X) = Pt(n) (X) = (Pn(X) +1
5
" which is an index of the nowhere defined function.

)
)

- Such a function cannot be total.

How far did we get?

Rogers’ Isomorphism Theorem

enumeration

Rogers’ Isomorphism Theorem

Rogers’ Isomorphism Theorem

Rogers’ Isomorphism Theorem

2. from total functions to partial computabilities

Definition:

n—+1 ifm=20
A:mni— < Alm—1,1) ifm>0andn =0
A(m—1,A(myn—1)) otherwise

Unary version:
Ack : n+— A(n,n)

2. from total functions to partial computabilities

any primitive recursive

2. from total functions to partial computabilities

tion properties

ny primitive recursive

ound the size of their flow

2. from total functions to partial computabilities

tion properties

ny primitive recursive

ound the size of their flow

on with sim, and use;,:

2. from total functions to partial computabilities

General case for fundamental classes
| OE——

any primitive recursive

| bound the size of their flow

lation with sim,, and use,:

2. from total functions to partial computabilities

General case for fundamental classes
| OE——

Definition:

For an enumerable class ¢ with sim, and use; functions:

B8] = X — max {‘pﬁsec(,)(o) 1P < x} + x

Increasing version

2. from total functions to partial computabilities

General case for fundamental classes

eaver properties

s faster than any c-fundamental
tion

S Enables us to bound the size of their flow

versal simulation with sim. and use.:

ims (e, x, 888 (s (e, x)))

2. from total functions to partial computabilities

n function properties

than any primitive recursive

S to bound the size of their flow

ulation with sim, and use;,:

A recursive jump for fundamental classes

A recursive jump for fundamental classes

A recursive jump for fundamental classes

A recursive jump for fundamental classes

Capture a class complexity through
ble sets

2. from total functions to partial computabilities

Capture a class comnlexitv throiiah
Every enumerable set is enumerable by a primitive recursive

function.

Enumerate we
Simulate @, using bounded W in Kleene’s Normal Form:

(Pe,s(x) — F(Wé S-T(e)X>Y)) = SimT(e)X)S)

Enumeration with repetitions:

Enumerable sets and

©e(0), ©c(0), ..., ©c(0), (1), @e(2), @e(2),. ..

2. from total functions to partial computabilities

Capture a class complexity through
rable sets

assical definition not interesting

sets are c-enumerable.

2. from total functions to partial computabilities

'A[Capture a class complexity through

haracterisations
erable sets d

a partial function

of a partial function

2. from total functions to partial computabilities

'A[Capture a class complexity through

haracterisations
erable sets d

a partial function

of a partial function

2. from total functions to partial computabilities

F)apture a class complexity through B s ations

erable sets

of a partial function

Classical definition not interesting of a partial function

ts are c-enumerable.

2. from total functions to partial computabilities

'A[Capture a class complexity through

haracterisations
erable sets d

a partial function

fg partial function

element on each iter-

2. from total functions to partial computabilities

F)apture a class complexity through B s ations

erable sets

of a partial function

Classical definition not interesting of a partial function

ts are c-enumerable.

2. from total functions to partial computabilities

Capture a class complexity through

ble sets
3 partial function

How do we know if a function is 1-1?
We do not.

Check 1-1-ness for each new value

If not, the 1-1 prefix defines a finite set

ment on each iter-

2. from total functions to partial computabilities

c-recursivities

of c-enumerability

2. from total functions to partial computabilities 20/27

c-recursivities

n of c-enumerability

\aracterisations

lic function Xk is recur-

2. from total functions to partial computabilities 20/27

c-recursivities

X-c-recursivity

mmLcharacteristic function

' weak-c-recursivity

| c-enumerable and co-c-enumerable

strong-c-enumerability

el nereesingly -

ngly c-enumerable and co- 9

2 notion of c-enumerability

2. from total functions to partial computabilities 20/27

c-recursivities

X-c-recursivity

e notion of c-enumerability \c-fundamental characteristic function -

weak-c-recursivity

ical characterisations M@pd co-c-enumerable
ive if: strong-c-enumerability

c-el increasingly .
ﬁng-c-recursivity

ongly c-enumerable and co- &

20/27

2. from total functions to partial computabilities

Noticeable sets and recursive properties

Noticeable sets and recursive properties

Noticeable sets and recursive properties

2. from total functions to. partial computabilities
OOk TUNCHpES SoRTIAI GO RS oY

3. subcomputabilities

Computability, with holes

c-partial functions

3. subcomputabilities 23/27

c-partial functions

A partial function is a function whose
.graph is enumerable.

A graph of a function is a well-formed
set of integers.

3. subcomputabilities

c-partial functions

A partial function is a function whose
.graph is enumerable.

A graph of a function is a well-formed
set of integers.

g é, Ge is the graph induced by w

':‘Hmeration: (o).

S

3. subcomputabilities

c-partial functions

A partial function is a function whose
aph is enumerable.

A graph of a function is a well-formed
set of integers.

Ve, G, is the graph induced by w;

ﬁ Hmeration: (o).

S

3. subcomputabilities

c-partial functions

A partial function is a function whose
aph is enumerable.

A graph of a function is a well-formed
set of integers.

Ve, G, is the graph induced by w;

ﬁ Hmeration: (o).

S

3. subcomputabilities

c-partial functions

A partial function is a function whose
aph is enumerable.

composition

A graph of a function is a well-formed
set of integers.

" Ve, G, is the graph induced by w;

iﬂmeration: AR

3. subcomputabilities

c-partial functions

m
numer:

A { mi(p) ifn=2p

No composition
¢ contains

iftn =2p +1

and g : n — 2n, but not fo g = B&d.

No s theorem
c contains f : {e,x) — @ (x) but not all the recursive functions.

23/27

c-partial functions

A partial function is a function whose
is enumerable.

composition

A graph of a function is a well-formed
set of integers.

ativity/productivity

" Ve, G, is the graph induced by w;

1:nWeration: AR

3. subcomputabilities

c-partial functions

composition

ativity/productivity

cond recursion
amental class ¢

h c-partial of domain A
e!

3. subcomputabilities

A graph of a function is a well-formed
set of integers.

Ve, e is the graph induced by w_

;:eration: AR

Letf = 4),-“; € cand h = @; c-partial of domain A co-enumerable.

Goal: show that there is a c-partial fixed-point with fundamental jose
computable index.
The following function is c-partial as a recursive extention of a c-
partial:
[oglu) ifueA
R — { (pfpcm (u) otherwise.

Its index is computable from x in ¢, by a function d, of index /g, .
Let e, = comp(is, ig,) be an index for f o dj.

o5 (u) ifueA

Pos (o) (U) = Py, (q,) (u) otherwise.

Yu,u @y o, () = {

Choose n = dj,(e,), then:

P = 9f onAand @5 = @S = honA.
Hence, n is a partial fixed-point for f.

3. subcomputabilities

-

X-c-recursivity
ental characteristic function

-
weak-c-recursivity

rable and co-c-enumerable
o

strong-c-enumerability

RlEiERle nere=sng’

P -
strong-c-recursivity

Strongly c-enumerable and co-
-enumerable

3. subcomputabilities

y
X-c-recursivity

ental characteristic function

-
weak-c-recursivity

rable and co-c-enumerable
o

strong-c-enumerability

RlEiERle nere=sng’

P -
strong-c-recursivity

Strongly c-enumerable and co-
-enumerable

3. subcomputabilities

[es, egl.

"’ﬁ xo ={e: @c(e) |}

[es, ¢5].

3. subcomputabilities

Reducibilities and set completeﬁss

K <m Xc via a c-fundamental reduction
For a and z such that @ and @3 are resp. never or always null, and
f, € ¢ such that Ve:

. ©x(x) ify=aory=e
oty
Prie) Y { 0 otherwise.

Let A be the strongly-c-enumerable set {y*"(z) : n > 0}, and h a

function null on A and undefined on A.
By our partial Kleene, we have:

0 ify € A
(pfx(n) (y) otherwise.

By case analysis we can verify that n € k; < x € X, with n being
c-fundamentally computable from x.

3

4. towards a fine structure of computabilities

Rising above

N
structure of cor

mputabilities ¥ spy W

4. towards 4 fine

re of fundamental classes

Relativisations of Kleene’s O and Hyperarithmetic sets
A notion of c-recursive orders (ordinals)
-degrees

Conjecture
&Eom-up (complexity-wise) construction of enumerable degrees
- kR i

bove computability

The case of X-recursion

W‘ over sets in admissible levels of Gédel’s L hierarchy

An enumeration (@f})ee“ of Ag (x-finite) sets

(Bl he roleoffndamenta uncons

An enumeration ((pf)eeoc of X1 (ct-enumerable) sets
the role of partial functions

e P

Preliminary results
sp'-like theorem

SALBR AN A A NN
e—— w

/X NY

AV,

TA"AVA'AVA

ALY

Y

AVAVAYAYDY

and honest degrees
sndent statements using ¢ classes?

Villenetuve De Berg: F. Givors
Gears: D. Proulx

¥ Calanques: B. Menginoux
Autumn: F. Givors
Pic Saint.Loup: Ophrys34
Moon: Thomas Bresson
Punched.eard: José Antonio Gonzalez Nieto.

g _Giraffe: Rob Hooft

—=| Milky Way: NASA

Railway tracks: Arne Hiickelheim

/
5. Eon Siol "

VAVA'AVA';

VAYA\VAYAYA"AY. VA VA"

|
>

	Classical computability
	From total functions to partial computabilities
	Subcomputabilities
	Towards a fine structure of computabilities
	Conclusion

